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Abstract

Linear systems in chemical physics often involve matrices with a certain sparse block structure. These can often be
solved very effectively using iterative methods (sequence of matrix–vector products) in conjunction with a block Jacobi
preconditioner [Numer. Linear Algebra Appl. 7 (2000) 715]. In a two-part series, we present an efficient parallel implemen-
tation, incorporating several additional refinements. The present study (paper I) emphasizes construction of the block
Jacobi preconditioner matrices. This is achieved in a preprocessing step, performed prior to the subsequent iterative linear
solve step, considered in a companion paper (paper II). Results indicate that the block Jacobi routines scale remarkably
well on parallel computing platforms, and should remain effective over tens of thousands of nodes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The symmetric eigenvalue/eigenvector problem, (H � kI)x = 0, and linear solve problem, w = (H � kI)�1v

(where H and I are N · N matrices, x, w, and v are vectors, and k is a scalar), recur countless times in scientific
and engineering disciplines. In molecular and chemical physics, these operations can be directly associated
with the computation of essentially all dynamical quantities of interest – vibrational and rovibrational energy
levels and wavefunctions, resonance energies and lifetimes [1,2], scattering cross-sections, cumulative reaction
probabilities [3–6], and chemical reaction rates. Typically, the matrix H is the representation of the Hamilto-
nian differential operator, Ĥ , in some finite basis of N orthonormal functions, presumed to span the relevant
portion of Hilbert space. However, one can also choose as representational ‘‘basis’’ a discrete set of N grid
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points distributed over position space, as is routinely done in the engineering and applied mathematics fields to
simulate partial differential equations (PDEs). Despite offering many advantages, even discrete grid represen-
tations can lead to inordinate computational effort, especially for chemical physics applications. Accordingly,
the goal of this paper (paper I) and its companion (paper II [7]) is to develop efficient parallelization strategies.

The precise determination of the grid-based matrix H requires specification of the particular discretization
scheme employed, e.g. finite difference [8], discrete variable representation (DVR) [9–15], optimized DVR’s
[16–22], etc. Our particular interest is the quantum dynamics of molecular systems, for which the appropriate
PDE to be solved is the nuclear motion Schrödinger equation, and DVR discretization is most commonly
employed. However, as described in detail in Appendix A, the particular choice of discretization is largely imma-
terial, as all such choices present similar advantages and challenges for the numerical methods described here.

The primary advantage of a discretized representation is sparsity, meaning that the majority of the matrix
elements of H are zero. A second advantage applies if the grid points are laid out in a rectilinear (but not nec-
essarily uniform) lattice, as in Fig. 1. In this case, the resultant H matrix must adopt the highly structured
block form of Fig. 2 (Appendix A, Ref. [23]), which we term the ‘‘A matrix form’’. Sparsity opens the door
to a host of standard numerical techniques, none of which, unfortunately, tends to be very effective for the
applications described above. In particular, the maximum distance between any two points in the graph [8]
of a generic A matrix is two, thus invalidating the nested dissection method. The profile of an A matrix (Refs.
[7,24]) is almost as large as N, and cannot be significantly reduced via any permutation of rows and columns –
implying that reordering methods such as reverse Cuthill-McKee [25] will not be very effective. Local pivoting
methods such as minimum degree are also ineffectual, because A matrices present a worst-case scenario with
respect to tie-breaking. Sparse iterative methods [26], i.e. those that operate via a sequence of matrix–vector
products, tend to be effective at low energies, k; however, the number of iterations required to achieve numer-
ical convergence, M, becomes prohibitively large when k is well in the interior of the spectrum of H [27]. This
pathological behavior is due to the spectral density of the H matrices involved, which tends to increase very
dramatically with energy for molecular Hamiltonians.

Preconditioning is a numerical technique that can reduce M substantially, provided that an approximation
P to the matrix (H � kI) can be constructed, such that matrix–vector products with P�1 are computationally
inexpensive (further details may be found in paper II). Unfortunately, none of the standard preconditioners,
including successive over-relaxation (SOR), Gauss–Seidel, and Jacobi [8], are effective for the above applica-
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Fig. 1. Schematic of structured rectilinear grids commonly used in PDE applications. Shown here is a two-dimensional case,
demonstrating explicitly the role of ‘‘inner’’ x and ‘‘outer’’ y dimensions on (lexicographical) grid point ordering. The two dimensions may
be actual spatial dimensions, or ‘‘effective’’ dimensions obtained via dimensional combination.
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Fig. 2. Sparsity pattern for Hamiltonian matrix representations on multidimensional rectilinear structured grids (Fig. 1): (a) d = 2
dimensions; (b) d > 2 dimensions, for which diagonal blocks are self-similar to the whole. For d > 2, two-tiered block Jacobi
diagonalization transforms the original (b) matrix to the less sparse form of (a), thus introducing fill-in. In contrast, recursive block Jacobi
diagonalization preserves the form of (b).
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tions. Jacobi preconditioning, for instance, for which P is simply taken to be the diagonal matrix elements of
(H � kI), requires diagonally-dominant matrices. In molecular Hamiltonians, however, the diagonal
contribution (arising primarily from the potential energy) and off-diagonal contribution (the kinetic energy)
are roughly comparable. A better preconditioning strategy – the precursor to that adopted here – is to exploit
the natural block structure of the A matrix form. In particular, taking the diagonal blocks of Fig. 2(a) to be P,
one obtains the standard block-Jacobi preconditioner. Though somewhat improved, this approach is still not
very effective, because the off-block-diagonal elements are quite substantial (Ref. [23] presents a more detailed
discussion).

If significant progress is to be made, a substantially different approach must be found. One of the authors
(Poirier) has spent over a decade developing effective preconditioners for chemical physics applications. By far,
the most efficient at reducing M (usually by orders of magnitude) are the optimal separable basis (OSB) pre-
conditioners [23,28–30]. A detailed description may be found in the above citations, but the basic idea is
straightforward: one applies an orthogonal transformation to H, known as ‘‘block Jacobi diagonalization’’
(Section 2) such that (1) the A matrix form is preserved, and (2) the off-block-diagonal matrix elements are
minimized. One then applies block-Jacobi preconditioning in the transformed representation. Construction
of the OSB preconditioner matrix P (and the related orthogonal transformation matrix V) requires nontrivial
computational effort, as compared with the standard preconditioner choices described above. However, pre-
conditioner construction need occur only once per calculation, in a preprocessing step performed prior to iter-
ative solution. The preprocessing CPU cost is greater than that of a single matrix–vector product (Section 2),
but typically less than the collective cost for all M iterations.

OSB techniques have proven to be extremely effective at reducing M for real molecular applications [23,27–
33]. However, they do little to combat the primary numerical difficulty, which is exponential scaling of N with
respect to system dimensionality, d. More specifically, N = nd, where n is the number of grid points per dimen-
sion, and d = 3(A � 1) where A is the number of atoms. Consequently, fully quantum dynamical treatments
have traditionally been limited to small molecules (3–5 atoms), despite much interest in larger systems. With
the recent advent of massively parallel terascale and petascale computing clusters, distributing the computa-
tional burden among hundreds to tens-of-thousands of CPUs, it is natural to consider parallel implementa-
tions of the above methodologies.

In this two-part series, we therefore develop efficient strategies for parallelizing not only the standard iter-
ative solver routines, but also the specialized OSB preconditioner construction routines. Paper II deals with
the former, focusing on the fundamental parallel matrix–vector product operation itself. This paper (I)
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addresses the latter by presenting an efficient parallel implementation of block Jacobi diagonalization. The
ultimate goal of this effort is to develop generalized, modular, parallel codes that can be readily applied in
a variety of disciplines. This requires that the algorithms must first be generalized for recursive application
to arbitrary system dimensionality, d. To assess parallel and system size scalability, a model molecular system
has been selected, for which d can be easily modified.

The organization of paper I is as follows. Section 2 overviews the serial implementation of recursive block
Jacobi diagonalization. Section 3 describes the parallel implementation, discussing domain decomposition,
data distribution, and load balancing. Section 4 presents performance benchmarks for parallel block Jacobi
diagonalization applied to the model system described above. Speedup and parallel efficiency data are pro-
vided and analyzed for a variety of data configurations. To improve performance of the basic matrix–vector
product operation (paper II), the dimensional combination technique is introduced in Section 4.3, wherein the
effects on parallel efficiency and total compute time are also discussed. A joint summary and concluding dis-
cussion for both papers will be provided in paper II.
2. Block Jacobi diagonalization

2.1. Two-tiered version

The heart of OSB preconditioning is block Jacobi diagonalization [23,27]. This is most straightforward
to apply when H is an A matrix, i.e.: (1) is partitioned into square blocks of identical size; (2) has diag-
onal off-diagonal blocks; (3) has identical diagonal blocks, apart from the diagonal matrix elements. As
discussed in Section 1 and Appendix A, A matrices are very common, and necessarily result when recti-
linear structured grids are used, or even unstructured grids if dimensional combination (Section 4.3) is
employed [28–30].

For the d = 2 case (Appendix A), H corresponds to Fig. 2(a). In order to preserve the A matrix form, the
block Jacobi orthogonal transformation V must satisfy
V ¼ Ix � vy ; ð1Þ
where vy is itself orthogonal. In particular, vy is chosen so as to minimize the off-block-diagonal contribution
of the transformed H matrix. Thus,
VTHV ¼ HD þHO; ð2Þ
where HD and HO comprise the (transformed) diagonal and off-diagonal blocks, respectively, and iHOi is min-
imized over vy. The resultant preconditioner, HD, is in effect an optimized adiabatic approximation [32].
A detailed mathematical and algorithmic description may be found in the citations [23,28–30].

The above two-tiered block Jacobi procedure can also be applied when d > 2 [30,32,33], provided
dimensional combination is employed. In particular, the d dimensions are partitioned into inner and outer
subsets, treated, respectively, as the lexicographically combined ‘x’ and ‘y’ dimensions, using the notation
of Appendix A. Thus,
i ¼ ði1; i2; . . . ; ilÞ and j ¼ ðilþ1; . . . ; idÞ: ð3Þ
However, much of the original sparsity is lost under Eq. (2), which in effect transforms the original Fig. 2(b)
matrix into a Fig. 2(a) matrix. If l = d/2 for example, the transformed matrix has Oðn3d=2Þ rather than Oðndþ1Þ
non-zero matrix elements.
2.2. Recursive version

An alternate, recursive version of block Jacobi diagonalization can be formulated that preserves the origi-
nal Oðndþ1Þ sparsity pattern. This is achieved by first applying two-tiered block Jacobi to the outermost dimen-



Fig. 3. Sparsity patterns of the diagonal block (HD
k ) and off-diagonal block (HO

k ) contributions to the Hamiltonian matrix, as obtained
from applying block Jacobi diagonalization at some intermediate dimension k. The k-level transformation matrix, Vk, is also indicated. On
average, the non-zero elements of HO

k are much smaller in magnitude than those of HD
k . Only the diagonal elements of HD

k differ from
(small) block to block, whereas the elements of HO

k are all different. For Vk, there is variation across blocks, but all matrix elements within
a (small) block are identical.
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sion (i.e. l = d � 1), and then recursively to each of the resultant diagonal blocks. The first and outermost
transformation Vd takes the diagonal-block form:
Vd ¼ I1 � I2 � � � Id�1 � vd : ð4Þ

The next, (d � 1)-level transformation is block-diagonal:
Vd�1 ¼ I1 � I2 � � � Id�2 � ðVid¼1
d�1 � � � � � Vid¼n

d�1 Þ: ð5Þ

The remaining transformations, Vk, are generated in like manner, down to the innermost dimension, k = 1.

The following is a numerical recipe for implementing the recursive block Jacobi scheme:
VT
d HVd ¼ HD

d þHO
d

VT
d�1HD

d Vd�1 ¼ HD
d�1 þHO

d�1

..

.

VT
1 HD

2 V1 ¼ HD
1 :

ð6Þ
In Eq. (6) above, HD
d and HO

d are the block-diagonal and off-block-diagonal Hamiltonian contributions after
the outermost Vd transformation has been applied. At the next level, only the HD

d contribution is further trans-
formed, to yield HD

d�1 and HO
d�1, etc. The final V1 transformation diagonalizes the innermost blocks, resulting

in HO
1 ¼ 0. The other HO

k ’s, though not zero, are minimized by the block Jacobi procedure. It can be shown
that the storage required for the HD

k , HO
k and Vk matrices scales as nd+1 or less; the corresponding sparsity

patterns are indicated in Fig. 3. The total number of CPU operations to implement Eq. (6) is Oðndþ2Þ [23],
as compared to Oðn2dÞ for the two-tiered approach with l = d/2.

Some of the matrices computed in the preprocessing step above must be stored for the subsequent precondi-
tioned iterative solve step (paper II). In particular, the Vk are needed to transform between the grid and OSB rep-
resentations, and HD

1 is used to compute the preconditioner P. One scheme (OSBW preconditioning [7,27,31,34])

also requires the HO
k , in order to compute Hamiltonian matrix elements in the OSB representation via
HOSB ¼ HD
1 þ VT

1 HO
2 V1 þ � � � þ VT

1 VT
2 � � �VT

d�1HO
d Vd�1 � � �V2V1: ð7Þ
3. Parallel implementation

3.1. Domain decomposition

The first step towards a parallel implementation is the determination of a suitable domain decomposition
strategy [35]. In many PDE applications, the locality of grid point coupling lends itself well to the standard
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specification of domains as geographical regions of the grid. This approach would fare extremely poorly for
generic A matrices, however, which incorporate coupling across the entire spatial extent of the grid (see also
Section 1). We are thus motivated to develop our own non-standard domain decomposition scheme.

Given the recursive nature of Eq. (6) and the self-similar block structure of the matrices involved (Figs. 2(b)
and 3), it is natural to associate domains with matrix blocks at different levels of the dimension hierarchy, with
the largest domains corresponding to the highest dimension index values. Domains are thus geographical
regions of the matrix, rather than the grid. The matrix elements belonging to each domain are defined as follows:
Fig. 4.
dimen
indicat
diagon
level d all

level d � 1 id ¼ i0d
level d � 2 id ¼ i0d and id�1 ¼ i0d�1

..

.

level 1 ik ¼ i0k for all k > 1:

ð8Þ
The situation is represented in Fig. 4(a). Note that the HO
k and Vk matrices are block-diagonal down to level

k + 1, and diagonal-block at the lower levels. This is very advantageous from the perspective of minimizing
parallel communication. If the total number of nodes is p = nd�s, for some integer s with 0 < s < d, then s rep-
resents the k-level value below which all processing occurs on a single node without communication, and no
further domain decomposition is needed. The scheme can also incorporate topographical relationships among
the p nodes, but we do not consider such a possibility here.

3.2. Data distribution

Distributing data as evenly as possible among the p nodes is a primary consideration in a parallel imple-
mentation, and one that is greatly facilitated by the domain decomposition of Section 3.1. For the lower,
k 6 s levels, whole diagonal blocks of HO

k and Vk (i.e. il ¼ i0l for all l > k) are stored on individual processors,
in contiguous groups of ns�k blocks each, as indicated in the bottom of Fig. 4(b).
k=d

k=d-1

k=d-2

(a) (b)

Schematic of domain decomposition (a) and data distribution (b) as employed by the parallel implementation at the highest three
sional levels, k = d, k = d � 1, and k = d � 2 (with n = 2 and s = d � 2). The figure depicts matrices rather than grids. Diagonal lines
e nonzero matrix elements to be stored. At each level in (a), the domains are indicated by solid squares. In (b), the four different
al line types (dashed, solid, dot-dashed, and dotted) indicate how data at each level would be distributed across p = 4 nodes.
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For k > s, there are multiple nodes per block (nk�s), rather than the other way around. A ‘‘block-row dis-
tribution’’ scheme is employed [24], for which all matrix elements of a given block row (really a sub-block row)
are stored on the same node. A block row size of ns�1 is used, resulting in a ‘‘cyclical’’, noncontiguous storage
of block rows, as indicated in the upper parts of Fig. 4(b). Thus, the first ns�1 rows of a given HO

k or Vk block
are stored on node 1, the next ns�1 rows on node 2, etc., up to node nk�s. At this point, only one part in n =
nk/(ns�1nk�s) of the block has been stored, so the next ns�1 rows are stored on node 1, starting a second cycle.
After n complete cycles, each node stores n block rows of size ns�1.

The great advantage of the above data distribution scheme is that matrix–matrix multiplications with HO
k

and Vk at a given level k may be performed without any internode communication (this is also true of matrix–
vector multiplications, as is exploited in paper II). However, total storage requirements per matrix are Oðndþ1Þ,
which is wasteful for the Vk matrices, in the sense that many matrix elements are repeated, and only nd�k+2

distinct values must be stored. In practice, therefore, we find it convenient to duplicate all of the Vk data
on all nodes when k > s, for which the largest storage required is only OðpnÞ. Obviously, this still allows
for matrix–matrix multiplications without communication.
3.3. Implementation, communication, and load balancing

Implementation of recursive block Jacobi diagonalization consists of two primary operations: (1) perform-
ing the matrix–matrix multiplications of Eq. (6); (2) computing the vk matrices as used in Eqs. (4) and (5), etc.
Since the sparsity structure of HD

kþ1 is effectively like that of Vk, it is clear from the discussion in Section 3.2
that (1) can be performed in parallel without any communication. Note that HO

k may be immediately discarded
once the k-level multiplication is completed (except when OSBW preconditioning is used).

As for (2), each Vk is obtained using standard two-tiered block Jacobi diagonalization as a sequential prod-
uct of Jacobi rotation matrices, Rk

j1;j2
ð/Þ, of the following form [23,28–30]:
½Rk
j1;j2
�ik ;i0k ð/Þ ¼

cos / if ik ¼ i0k ¼ j1 or ik ¼ i0k ¼ j2;

sin / if ik ¼ j1 and i0k ¼ j2;

� sin / if ik ¼ j2 and i0k ¼ j1;

dik ;i0k
otherwise:

8>>><
>>>:

ð9Þ
The sequential matrix–vector products themselves are computationally inexpensive. However, determination
of the optimal rotation angles, /, requires HO

k matrix elements gathered over all values of the l < k indices, il
and i0l [23,28–30]. In light of Section 3.2, this in turn requires parallel communication if k > s, though only
among the nk�s nodes of a given block group. The most expensive communication is associated with the out-
ermost level d, for which collective gather operations over the full cluster are required.

An important issue in parallelization is load balancing. The regularity of the operations described above
ensures that essentially perfect load balancing is achieved for the p = nd�s case considered here, and in the
more general case where n = nk varies with k, provided p is equal to some product of the nk’s, or their factors.
For the present pedagogical application, it is convenient to be able to rule out load balancing as a source of
parallel inefficiency; however, future implementations will be generalized to allow any desired value for p.
4. Numerical results

In this section, we apply the parallel recursive block Jacobi diagonalization algorithm, described in Sections
2 and 3, to a scalable prototype molecular system consisting of d coupled isotropic harmonic oscillators,
described by the potential energy function
V ðx1; . . . ; xdÞ ¼
Xd

k¼1

ðxkÞ2 þ 0:1
Xd�1

i¼1

xdxi: ð10Þ
There are n = 8 grid points per dimension, placed at xk
ik
¼ ð1=2Þik � 9=4. Using sinc-DVR discretization [12],

the one-dimensional kinetic energy matrices are found to be
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½hk�ik ;i0k ¼ ð�1Þik�i0k 2
p2=3 if ik ¼ i0k;

2=ðik � i0kÞ
2 otherwise:

(
ð11Þ
Eqs. (11), (A.2) and (A.4) are then used to construct the Hamiltonian matrix H.
Two types of scalability studies were performed. Data/system size scalability was investigated by varying d

while keeping n = 8 fixed. Parallel scalability was investigated by varying p (or equivalently, s). Finally, var-
ious dimensional combination possibilities were investigated (Section 4.3). The code was written in FOR-
TRAN 90 and MPI, and all numerical tests were performed on the Jazz platform [36,37] – a Linux-based
PC computing cluster with 350 2.4 GHz Pentium Xeon single-CPU compute nodes, networked via Myrinet
2000.

4.1. Data scalability for a single compute node

The data scalability study was performed using the same parallel codes as in Section 4.2, except that the
number of nodes p was specified to be one. This experiment serves to verify whether CPU time scales linearly
with number of operations for a single CPU, as expected. It also serves as a benchmark for the Section 4.2
parallel scalability study. All d values from d = 3 to d = 7 were considered (the d = 8 case exceeds the physical
memory limits for a single node [36]). For varying d and constant n, the Oðndþ2Þ scaling leads to
logð#opsÞ / log N þ const: ð12Þ

Fig. 5 is a log–log plot of CPU time as a function of N. From the figure, it is clear that the expected scaling
relationship is indeed observed, for all data sizes except the smallest considered (d = 3). In general, the CPU
times involved are quite fast, even for large d.

4.2. Parallel scalability: speedup and efficiency

Two natural indicators of parallel scalability are speedup and efficiency. Speedup is defined as the CPU
time-to-solution of a given task as performed on a single CPU, divided by that of the same task performed
on multiple CPUs. Parallel efficiency is speedup divided by p. When comparing different speedup and effi-
ciency values to evaluate scalability, the obvious question one first encounters is, how should the system size
scale with p? One can keep the system size constant, in which case unrealistic efficiencies are obtained in the
large p limit. A better approach would be to increase the system size with p such that the memory per CPU
remains constant. For linear algebra applications, one might argue that N or N2 should be proportional to p.
More sophisticated approaches have also been suggested, such as the isoefficiency scalability method [38–40],
discussed below.
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CPU time as a function of data size, for recursive block Jacobi diagonalization as performed using parallel codes on a single node
. Data size is given by N = 8d, where d is system dimensionality. All values from d = 3 to d = 7 are represented.
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In this section, the parallel scalability of block Jacobi diagonalization is investigated, vis-a-vis parallel
speedup and efficiency. Regarding the issue of system size vs. number of processors, our initial approach will
simply be to vary both parameters, i.e. d and p, simultaneously. The former now varies from d = 4 to d = 8
(i.e. N = 88 � 2 · 107 for the largest case). As for p, since n = 8 = 23, we expect perfect load balancing to be
achieved whenever p is any power of two. This restriction will be presumed for simplicity, and in order that we
may definitively rule out load balancing as a source of inefficiency for the present study. The following p values
were thus considered: p = 1, 2, 4, 8, 16, 32, 64 and 128.

The speedup and parallel efficiency are shown in Figs. 6(a) and (b), respectively. For all plots except d = 8,
speedup values are obtained via comparison with the p = 1 results from Section 4.1. For d = 8, the p = 1 cal-
culation cannot be performed, as discussed in the previous subsection. Consequently, the speedup is first
defined relative to the corresponding p = 4 calculation, and then multiplied by a typical speedup value for
p = 4, e.g. 4.0 in this case. From the figures, it is clear that speedup and parallel efficiency increase with data
size for fixed p, as expected. For the block Jacobi case with p = 64 nodes, for example, the parallel efficiency is
21% for d = 4 (N � 4000), 69% for d = 5 (N � 32,000), and nearly 100% for d = 6 (N � 256,000) and above.
For d = 6 and above, the speedup is nearly linear with p even up to 128 nodes. These results are extremely
encouraging vis-a-vis parallel scalability, particularly when extrapolated to larger calculations. To this end,
an isoefficiency analysis can be applied, as follows.

Imagine scaling N with p such that the memory requirements per CPU were to remain constant. For the
present application, this corresponds to linear scaling, i.e., to N � p. Thus, provided that the efficiency remains
constant, or increases with increasing N or p, then the algorithm should be scalable indefinitely, i.e. up to arbi-
trarily large p. Conversely, if N is instead scaled with p so as to maintain constant efficiency, then indefinite
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Fig. 6. Speedup (a) and parallel efficiency (b) of parallel recursive block Jacobi diagonalization, as a function of number of nodes, p, for
various data sizes N = 8d, ranging from d = 4 to d = 8.
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scaling requires that N increases linearly with p, or less quickly. From Fig. 6(b), there are three calculations
with parallel efficiency values in the vicinity of 0.83. These values suggest that the isoefficient scaling of N vs. p

for the block Jacobi operation scales as N � p3/2 – i.e., the memory per CPU scales as p1/2. Although not indic-
ative of completely indefinite scaling, this nevertheless represents a very modest increase in per-CPU memory
requirements. Table 1 provides an estimate of the number of matrix entries that must be stored per CPU as a
function of p, in order to maintain 0.83 efficiency. This includes the actual values for the p 6 128 calculations
performed here, as well as projections for larger p values. Since the p 6 128 memory requirements are not very
large to begin with, it is clear that the block Jacobi algorithm should be scalable to extremely large clusters
indeed, before memory or efficiency limitations are encountered.

4.3. Dimensional combination

Although the results of Section 4.2 indicate very favorable parallel scalability, it will be shown in paper II
that the basic matrix–vector product procedure does not parallelize nearly so well. The basic reason is that the
number of operations scales only as nd+1 rather than nd+2 so that the procedure is communication-intensive
rather than CPU-intensive. A reasonable strategy, therefore, is to increase the ratio of CPU-to-communica-
tion times, by somehow artificially reducing the sparsity of the matrices involved. We have already discussed
one approach that achieves this automatically, i.e. the standard two-tiered block Jacobi diagonalization of
Section 2, as applied to systems with d > 2. This approach divides up all of the d dimensions into two catego-
ries, inner and outer. From a numerical point of view, the resultant matrices behave as if all of the dimensions
within the same category were combined together into a single dimension, so that the resultant sparsity pattern
corresponds to d = 2 and Fig. 2(a). In effect, d is greatly reduced, but since N must still be the same, the effec-
tive n value is greatly increased.

In light of the recursive generalization of the block Jacobi procedure developed in Section 2, there is no
reason why we cannot allow completely arbitrary partitionings of dimensions into separate categories, each
of which constitutes a single ‘‘effective’’ dimension. In other words, the indices i16 k6 d are replaced with effec-
tive dimension indices i016 k0 6 d 0 , where
Table
Isoeffic

System

4
5
6
7
8
9

10

For ea
The co
i01 ¼ ði1; i2; . . . ; il1
Þ;

i02 ¼ ðil1þ1; . . . ; il2
Þ;

..

.

i0d0 ¼ ðild0�1þ1; . . . ; idÞ:

ð13Þ
Indeed, there are often physical motivations for such a ‘‘dimensional combination’’ procedure. For example, it
might be advantageous to lump together two strongly coupled dimensions [27], or the three Cartesian vector
components that describe a single atom. For non-Cartesian applications of block Jacobi diagonalization, there
are certain situations where dimensional combination must be applied [14,30,41].

Dimensional combination offers other potential advantages as well (paper II). For the present purpose,
however, we will be concerned only with its effects on parallel scalability. The primary effect is to reduce
1
iency scalability study for parallel block Jacobi diagonalization algorithm

dimensionality d Grid size N Number of nodes p Data per node 8d+1/p

4096 8 4096
32,768 32 8192

262,144 128 16,384
2,097,152 512 32,768

16,777,216 2048 65,536
134,217,728 8192 131,072

1,073,741,824 32,768 262,144

ch system dimensionality, d, column III lists the number of nodes, p, for which the calculation achieves a parallel efficiency of 0.83.
rresponding amount of data (number of distinct matrix entries) which must be stored per node is given in column IV.
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the sparsity of the matrices involved. The original H matrix is of course the same, but the HD
10 , HO

k0, and Vk 0

matrices that result from block Jacobi diagonalization are now completely different. As per Section 2, the
number of CPU operations required to perform block Jacobi diagonalization increases substantially, as does
that of the resultant matrix–vector products.

For the numerical investigation conducted here, six different configurations of dimensional combinations
were considered, all applied to the same initial d = 6 system. An example will serve to clarify the notation used:
‘‘64 *84’’ = (8* 8)*8 *8*8*8 implies that the innermost two dimensions have been combined into one effective
dimension (i.e. l1 = 2), etc. The six configurations are as follows: 86; 64*84; 512*83; 643; 84

*64; and 83
*512.

As in Section 4.2, all power-of-two values of p up to p = 128 were considered. Total computational time and
speedup data for the resultant block Jacobi diagonalizations are presented in Figs. 7(a) and (b), respectively.

From (a), it is clear that dimensional combination increases the CPU time required for block Jacobi diag-
onalization very substantially. This is to be expected – the parallel efficiency for the uncombined 86 case is
already very good, and cannot be significantly improved. We also find a large jump in CPU time between con-
figurations that combine dimensions in groups of two (i.e. the ‘‘64 configurations’’) vs. groups of three (the
‘‘512’’ configurations). This is also to be expected; according to the scaling described in Section 2, the number
of operations increases by roughly a factor of n2 = 64, for each dimension in the largest category. This is com-
parable to, but somewhat worse than, the scaling that is actually observed in Fig. 7(a).

The figure also indicates significant configurational ‘‘splitting’’ within the 64 and 512 categories. Configu-
rations with multiple dimensional combinations are somewhat more expensive than those with only a single
dimensional combination of the same size, which is certainly to be expected. More surprising, perhaps, is the
fact that combining outer dimensions is significantly less expensive than combining inner dimensions insofar
as block Jacobi diagonalization is concerned. The memory requirements are also somewhat reduced. On the
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Fig. 7. CPU time (a) and speedup (b) of parallel recursive block Jacobi diagonalization, as a function of number of nodes, p, for d = 6
system with various dimensional combination schemes.
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other hand, the parallel efficiency for large p is substantially worse for combined outer dimensions than for
combined inner dimensions, as is evident in Fig. 7(b) – indeed, the outer case is even worse than for no dimen-
sional combination. Despite this, and the large relative increases in CPU times when dimensions are com-
bined, the absolute block Jacobi diagonalization times are still quite small, and unlikely to be the
bottleneck of the total preprocessing-plus-iterative-solve operations required to solve the total eigenproblem
or linear solve problem. As discussed in paper II, this is because the cost reduction for the iterative solve por-
tion may far outweigh the additional preprocessing cost paid here.
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Appendix A. Structured grids and the A matrix form

Consider the two-dimensional Cartesian Hamiltonian,
Ĥ ¼ � �h2

2m
o2

ox2
þ o2

oy2

� �
þ V ðx; yÞ; ðA:1Þ
and the matrix representation H obtained from the n · n structured rectilinear grid of points (xi,yj). As indi-
cated schematically in Fig. 1, the grid points need not be spaced uniformly. Individual matrix elements are
specified using both row indices (i, j) and column indices (i 0, j 0). In most discretization schemes, the potential
is represented as a diagonal matrix,
Di;j;i0 ;j0 ¼ dii0djj0V ðxi; yjÞ: ðA:2Þ
The schemes differ with respect to how they represent the (Laplacian) kinetic energy contribution, but in all
cases, this involves off-diagonal coupling along a single dimension at a time. Thus, if h is the one-dimensional
kinetic energy matrix according to some particular discretization scheme, then
H ¼ hx � Iy þ Ix � hy þ D: ðA:3Þ

If the ordering of grid points is as indicated in Fig. 1 (lexicographical in x then y), then H will adopt a natural
block structure, for which (i,i 0) labels a matrix element within a block, and (j, j 0) labels an individual block. For
this reason, we refer to x and y as ‘‘inner’’ and ‘‘outer’’ dimensions, respectively. The sparsity pattern of H
arises mainly from the kinetic energy terms. In particular, hx � Iy is ‘‘block-diagonal’’, meaning that only
the diagonal blocks have non-zero matrix elements, and hx � Iy is ‘‘diagonal-block’’, meaning that all blocks
are themselves diagonal. The sum of all three terms in Eq. (A.3) thus matches Fig. 2(a).

All of the above may be generalized for arbitrary dimensionalities d, with dimensions xk and indices ik (row)
and i0k (column). In this context,
H ¼ h1 � I2 � � � � � Id þ I1 � h2 � � � � � Id þ � � � þ I1 � I2 � � � � � hd þ D; ðA:4Þ

and lexicographical ordering leads to the self-similar recursive block sparsity pattern of Fig. 2(b). Assum-
ing n grid points per dimension, since the hk are in general dense matrices, the number of non-zero matrix
elements scales as nd+1. Many further generalizations are also possible, e.g. for effective potentials, non-
Cartesian coordinate systems, non-direct-product basis sets, etc. [23,28–30], but these will not be consid-
ered here.
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